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Abstract

Conditions in the ocean sometimes allow spe-
cific species to populate so quickly that these
species form dense aggregations of individuals.
Many species of microscopic algae in particular
are known to form in these dense aggregations,
or “blooms.” Some species that form blooms are
toxic to marine organisms or humans. In this
paper, one method of predicting whether or not
blooms will occur involves exploring the impact
of grazing zooplankton on algae populations, and
how the toxin produced by the phytoplankton
a↵ects those zooplankton populations. Results
show an increase in toxin production yields a
decrease in the graph’s period and an increase
in ratio between zooplankton and phytoplankton
populations. Another model explores how the
relationship between di↵usion and patch size in-
fluences algal blooms. This paper explores these
two simple models of predicting blooms and how
di↵erent parameters a↵ect the results, and which
model gives more consistent outcomes. A final
model involves converting the one-dimensional
di↵usion model to a two-dimensional model, and
yields interesting changes regarding the relation-
ship of the patch size to whether or not there will
be subsequent algal bloom (or lack thereof).

1 Introduction

Algal blooms are rapid increases in the popula-
tion of microscopic phytoplankton within a ma-
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rine or lake [1] environment. So-called “Red
Tides” are algal blooms of dinoflagellates or di-
atoms that produce toxins or acids that cause
temporary environmental harm (a↵ecting water
quality and killing fish, birds and mammals) in
the ecosystems in which they are present. Some
species that cause red tides give the surrounding
water a red discoloration, hence their name [2].

Grazing zooplankton have been shown to have
an impact on species that cause algal blooms.
Di↵erent zooplankton are a↵ected in di↵erent
ways. For some, dinoflagellates can “disrupt the
mechanical and chemical sensory system” [3] of
grazers. In other species of zooplankton, the
grazers show no apparent side e↵ects from the
toxins, but retain high concentrations of tox-
ins, causing a cascading e↵ect as the toxicity
increases on the trophic pathway [4] [5]. The
e↵ect of grazing on toxic dinoflagellate blooms
varies from species to species, “and depends on
the species composition of the grazing commu-
nity” [5].

Algal blooms and red tides have been hap-
pening before recorded history, but in recent
times blooms have been happening more fre-
quently and more intensely. “Anthropogenic in-
fluences (such as nutrient run-o↵ inducing red
tide blooms and the transport of dinoflagellate
cysts in ballast water of ships) have been sug-
gested as possible causes” [6]. In lake environ-
ments, where algal blooms are nearly exclusively
caused by an excess of nutrients as a result of
“drainage, water run o↵ from agricultural field”
[1], models have been created to simulate how
nutrients impact algal blooms [1].
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Di↵usion is often used in modeling algal
blooms [7] because spatial “and temporal distri-
bution of phytoplankton is fundamentally gov-
erned by the movement of water, because they
are lacking in mobility or have only weak mobil-
ity” [8].

Considering that red tides bring with them
toxins that significantly a↵ect the environment
they’re in, attempting to model the threshold
that dictates whether or not a bloom will oc-
cur could, if applied, help predict when di↵erent
algal blooms occur and why. As the results of
a red tide can a↵ect the ecology of an environ-
ment, local fisheries and beachgoers [9], and in
some cases drinking water[10], modeling blooms
can help lead to counteracting the negative en-
vironmental, social, and economic e↵ects they
cause.

In this paper I explore di↵erent models with
the intent of finding the best with which to pre-
dict an algal bloom. The main contribution of
this study involves expanding a one-dimensional
di↵usion model to two dimensions, and exploring
the subsequent changes to relationships between
parameters that comes with adding a dimension.
The rest of this paper is organized as follows: In
Sec. 2 I introduce three models for this study and
describe the techniques used to analyze them. In
Sec. 3 I present analytic results, and in Sec. 4 I
discuss my results and how I plan to move for-
ward with research.

2 Methods

This paper practices three methods of attempt-
ing to predict algal blooms. One involves the in-
teraction of grazing zooplankton on algae, while
two others attempt to predict the occurrence
of a bloom based on di↵usion. For all models,
computer-generated graphs and animations are
plotted using Python 3.4.

2.1 Lotka-Volterra

The first, a Lotka-Volterra model pair of equa-
tions [11]:
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This model explores the relationship between
phytoplankton and grazing zooplankton. Here
P and Z represent the density of phytoplankton
and zooplankton population respectively. ↵ (>0)
is the specific predation rate, � (> 0) represents
the ratio of biomass consumed per zooplankton
for the production of new zooplankton. µ (> 0)
is the mortality rate of zooplankton. ✓ (> 0) is
the rate of toxin production per phytoplankton
species and � (> 0) is the half saturation con-
stant [11].
The model was coded in Python. The follow-

ing parameters were used: P = 3, Z = 0, r =
.175, ↵ = 1, � = .35, µ = .0825, ✓ = 0.2, K

= 160, � = .06. The values of r, ↵, �, µ, and �

were chosen by averaging each of their ”Reported
ranges” in Table 1 from [11]. The population ra-
tios between P and Z were also taken from [11].
K was chosen to be 160, and the values for ✓

were varied in the models. Values for ✓ were in-
creased by a factor of 10 for four figures, starting
at 0.01 and increasing, to see the di↵erences in
results.

2.2 1-Dimensional Di↵usion
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The above model [7] is a simple one dimen-
sional di↵usion model with growth.
If the function u, of x and t, is split up into

two functions, each dependent upon one vari-
able, then x and t as variables can be isolated
from one another:

u(x, t) = a(x)b(t) (4)

Plugging the above equation into Eq. 3 yields:
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Simplify equation so that a and b are isolated
on either side and divide through by D:
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By setting each side equal to a common con-
stant, the left and right side can be separated.
Since the variables are now totally independent
from one another, the partial derivatives become
ordinary derivatives, and we can now solve these
equations.
This process of separating variables and solv-

ing their corresponding functions makes it possi-
ble to find key relationships between parameters.
An important inequality in the model arises:

L � ⇡

r
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r

(7)

To see in more detail the steps that lead up to
this inequality, see pages 131-133 of Edward Bel-
trami’s Mathematical Models in the Social and
Biological Sciences.
What this inequality states is that for any

given di↵usivity constant and rate of algal re-
production, there is a corresponding minimum
patch width at which a population of algae can
sustain itself without di↵using out of the system
into the surrounding water.
Using di↵erent patch widths, Eq. 3 was plot-

ted for multiple time values using Python, and
the resulting plots can be viewed in Section 3.
Animations for each model were posted, accessi-
ble through a link mentioned in the description
of each figure.

2.3 Two-Dimensional Di↵usion
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This model is a modification to Eq. 3, and
simulates the di↵usion of algae across two di-
mensions to provide a more realistic simulation.
The model in Eq. 8 was also coded using Python,
and the resulting plotted images were sequenced
to form a video, accessible through a link men-
tioned in the description of each figure. The last
frame of each video is used in the figures for this
paper.

3 Results

There are three main results from this study: one
for each of the models employed.
Limiting cases:
In Eq’s. 1) and 2, setting Z = 0 and K = 160

yields the following expected graph in Fig. 1:

Figure 1: P (blue line) = 3, Z (green line) = 0

Similarly, setting P = 0 yields a similarly ex-
pected result in Fig. 2, in which the Zooplankton
gradually die o↵ since there is nothing to graze.

Figure 2: P (blue line) = 0, Z (green line) = 1,
✓ = 50.

3.1 Lotka-Volterra Results

Choosing a very small value, ✓ = 0.01, the result
in Fig. 3, yields a period between oscillations of
approximately 150 time units. The population
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of phytoplankton peaks between 4.5 and 5, and
the population of zooplankton peaks at about
1.8.

Figure 3: P (blue line) = 3, Z (green line) = 1,
✓ = 0.01

Choosing the value ✓ = 0.1, the result in Fig. 4
yields a period between oscillations of approxi-
mately 125 time units. The population of phy-
toplankton peaks slightly higher than in Fig. 3,
and the population of zooplankton slightly lower.

Figure 4: P (blue line) = 3, Z (green line) = 1,
✓ = 0.1

Choosing a larger value, ✓ = 1, the result in
Fig. 5, yields a period between oscillations be-
tween 16 and 25 time units. The population of
phytoplankton peaks at just above 7, and the
zooplankton at about 1. The phytoplankton
population dips just below 1 at its initial low-

est trough.

Figure 5: P (blue line) = 3, Z (green line) = 1,
✓ = 1

Choosing a large value, ✓ = 10, the result in
Fig. 6, yields an initial spike in phytoplankton
population that peaks at between 55 and 60.
The phytoplankton population density does not
dip below 10 at its lowest trough, and the zoo-
plankton population density remains below one.
It can be observed that equilibrium is reached at
a population density approximate to 29.

Figure 6: P (blue line) = 3, Z (green line) = 1,
✓ = 10

It was found that as values of ✓ increase, the
period of the graph decreases, and the ratios be-
tween the population peaks for the phytoplank-
ton and zooplankton increases. All in all, this
model is useful for observing the e↵ects of graz-
ing zooplankton upon red tide algae, but its
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results are less significant for predicting algal
blooms. The impact of grazers on algal blooms
is negligible when it comes to attempting to pre-
dict a bloom, and in many cases, only specific
species are a↵ected by the toxins.

3.2 1-Dimensional Di↵usion Results

For the following results, these parameters were
used: a starting population density of P = 50,
a growth rate of r = .3, a di↵usivity rate of 30,
and patch width L was varied. Using these pa-
rameters, the minimum patch width to yield a
bloom is calculated to be 10⇡.
The following occurs in Fig. 7 when the patch

width is at 25, below the minimum for a bloom
to occur.

Figure 7: L = 25. To see the animation for
for the simulation under these parameters, go to
http://youtu.be/2RqTJm0IJWc

The algae quickly di↵use out of the system.
There is no sign of growth - this is in accordance
with the inequality.
The following occurs in Fig. 8 when the patch

width is at 32, just above the minimum for a
bloom to occur.
As expected, the algae do not di↵use out of

the system. In fact, the algae begin to grow after
the minimum population is reached, however it
takes a long time for the bloom to occur.

The following occurs in Fig. 9 when the patch
width is at 50, a number well above the mini-

Figure 8: L = 32. To see the animation
for this simulation, go to http://youtu.be/

WKg02KqG8dA

mum. As expected, the bloom occurs. The in-
equality holds true for all values tested.

Figure 9: L = 50. To see the animation
for this simulation, go to http://youtu.be/Kv_

5Pcrp5l8

3.3 2-Dimensional Di↵usion Results

The same parameters that were used in the 1-
Dimensional Di↵usion model were used in this
one.
Fig. 10 occurs when the patch width is at 25,

again, below the minimum stated by the inequal-
ity. As expected, much like in the one dimen-
sional equivalent the algae di↵use out of the sys-
tem before being able to bloom.
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Figure 10: L = 25, time = 7.9. To see the ani-
mation for this simulation, go to http://youtu.
be/DYZxjhz1fWM

Fig. 11 occurs when the patch width is at 32,
a number just above the minimum according to
the inequality.

Figure 11: L = 32, time = 7.9. To see the ani-
mation for this simulation, go to http://youtu.
be/umzIcAVTb6Y

This yields an unexpected result. After 7.9
time units, the algae have nearly completely dif-
fused out of the system. Running the model
longer shows that the algae have completely dif-
fused.
This requires a reevaluation of the inequality.

Through trial and error, I found that the mini-
mum patch width for this two dimensional model
was approximately 44.4. The ratio between the
two-dimensional and one-dimensional models is

about 1.413, or approximately
p
2.

Shown in Fig. 12 is the model with a patch
width of 44.5. Much like the one dimensional
model at a patch width of 32, the population
density seems to stagnate at its lowest point - it
grows, but very slowly, and in reality would not
cause a large bloom.

Figure 12: L = 44.5, time = 7.9. To see
the animation for this simulation, go to http:

//youtu.be/RMZZFXZzA2A

To better understand the reasons for this new
minimum,

p
2 is plugged into the inequality:

L

p
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r

(9)

Rearranging the terms in order to isolate D:
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Rearranging the terms in order to isolate r:

2r � D⇡

2

L

2
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What this new inequality asserts is that for a
two dimensional di↵usion model, the di↵usivity
rate of the system must be one half of that of the
one dimensional di↵usion model. Alternatively,
the rate of population growth must be twice
that of the one dimensional di↵usion model.
Since in actuality the di↵usivity and the rate of
growth would remain relatively constant, the
patch width would have to be

p
2 times that

of the one dimensional model. These findings
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make sense, because the algae is now di↵using
across two dimensions, and the new parameters
must make up for the faster rate at which the
algae is lost.

Fig. 13 occurs with a patch width of 75, well
above the minimum according to the new in-
equality. This final run of the model verifies
that the new inequality is true for numbers larger
than the minimum.

Figure 13: L = 75, time = 7.9. To see the anima-
tion for this simulation , go to http://youtu.

be/r9DyvT96AIY

4 Conclusion and Future Re-

search

The Lotka-Volterra model was helpful as far as
exploring the impact of zooplankton on phyto-
plankton. It is not ideal for predicting the oc-
currence of blooms, but is useful for potentially
controlling red tides through the introduction of
grazing zooplankton. This model could be very
useful for modeling very specific conditions of red
tide; how to control specific red tide species with
specific grazers.
Both the second and third models are simple,

but are good ways of determining whether or not
blooms will occur based on the algae population
across a certain patch area. The biggest surprise
in graphing these models was the unprecedented
change in the inequality. It turned out to be
logical, since considering the algae population is

di↵using across a second dimension it must re-
produce at twice the rate to sustain a bloom.
Future work will include adding more param-

eters to the equation, including algae death, de-
pendence upon nutrients, adding variance in dif-
fusivity, and potentially incorporating the Lotka-
Volterra relationship into the improved di↵usion
model. Also among my goals are modeling dif-
fusion across three dimensions, as well as find-
ing the new relationship corresponding between
patch size and the occurrence of blooms in three
dimensions.
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